Agenda of the plenary session

• Strategic vision & ambition 2022/2025

 Speaker: Emmanuel Ladent, CEO

• Carbios at the edge of the enzymatic innovations

 Speaker: Alain Marty, CSO

 Speaker: Lise Lucchesi, Intellectual Property Director

• Industrialisation focus on Carbios technology

 Speaker: Lionel Arras, Industrial Development Director

• Carbios’ partners testimony

 Speaker: Martin Stephan, Deputy CEO
 Novozymes, L’Oréal, Suntory Beverage & Food Europe

• Conclusion + Q&A

 Speaker: Philippe Pouletty, Chairman
 • Carbios’ management team
Strategic vision & ambition
2022/2025
Emmanuel Ladent, Chief Executive Officer
How do we fix this?

350 million tons\(^{(1)}\) of plastic produced every year and only 14% is recycled globally\(^{(2)}\)

9 million tons \(^{(3)}\) of plastic enter oceans every year

Let’s take action together!

It is time to rethink the way we handle the end of life of plastics and textiles

Carbios is best positioned to deliver concrete and sustainable solution to tackle this emergency.

3. Ademe in 2012
Mission

Lead the transition towards sustainable plastics economy by developing technologies for the end-of-life of plastics

CARBIOS AMBITION

Become the world leader in PET recycling by 2035 and increase our pipeline of eco-friendly technologies

Provide the most sustainable and most circular solutions for the end-of-life of plastics and textiles

Become the best employer of its category – The best place to work
Carbios: a team of talents committed to innovate for the planet

The first and only company to have developed biological technologies for the end-of-life of plastics and textiles

- 84 employees
- 49% of women
- 51% of men
- 65% of staff dedicated to RDI
- +29 new hires planned
- 4 sites

Clermont-Ferrand area
Toulouse
Longlaville
Carbios’ disruptive solutions: Industrial processes for the recycling and the biodegradation of multiple kinds of plastics

Two disruptive solutions in industrial and commercial scale-up:

- Biorecycling PET
- Biodegradation PLA

Continue to innovate and offer other polymers an environmentally friendly end-of-life

INNOVATION on other polymers
A booming market for recycled PET with a strong unbalanced Supply / Demand
Recycled PET: a booming market...

Worldwide consumption of PET ~ 90 Mt/year (1/3 packaging - 2/3 fibers)

- PET market: growing at 4% CAGR*
- r-PET market: growing at 14% CAGR*

Sources*: Carbios assumptions, IHS Markit in 2021, Market Research Future in 2021 and KPC in 2022
... Supported by more severe regulations

IN FRANCE AND EUROPE

- Dec. 2015: EU Action Plan for a Circular Economy
 - 90% collection rate target for plastic drink bottles by 2029
 - A mandatory minimum target of 30% recycled content in new plastic bottles by 2030
- July 2016: Germany’s voluntary agreement regarding reduction of plastic bags
- July 2017: France commits to 100% recycled plastic by 2025
- March – April 2018: Royal Decree on plastic bag
 - Deposit system in England and Scotland
 - UK Plastics Pact
- July 2018: Ban on the sale of certain single-use plastics from 2020
- March 2019: Ban on single-use plastic straws, plates, cutlery, and disposable cups
- 2020: Introduction, from 2022, of a deposit system and implementation of the Directive on single-use plastics
- April 2022: One extended collecting rule on the territory (all plastics packaging)

Source: OECD Environment Directorate in 2018
... but mainly pulled by Brands’ commitments

Major brands are committed to propose 100% sustainable plastic packaging

Packaging: strong drivers for sustainable solutions

Apparel & Sportswear demand

Nov. 2018: "By 2025, 50% of plastic used in our packaging will be recycled or bio-sourced" and "by 2025, 100% of our plastic packaging will be refillable, reusable, recyclable or compostable"

Jan. 2019: "Nestlé Waters will increase the recycled PET content in its bottles to 35% by 2025"

Oct. 2016: "Design 100% of its packaging to be recyclable, compostable or biodegradable by 2025"

Sept. 2019: "Our ambition? Offer 100% sustainable plastic bottles made from recycled or bio-sourced materials for our entire beverage portfolio."

Jul. 2017: "100% of packaging recyclable, reusable or compostable by 2025" and "Recycled plastic content to at least 25% by 2025"

Sept. 2019: "At Nike, we are pursuing new business models that move away from the take, make, and waste linear models of the past. Our success depends not only on the work within our own value chain, but on disruptive partnerships across a broader textile production and manufacturing ecosystem."

Feb. 2019: "We continue to improve our environmental performance when manufacturing our products. This includes using sustainable materials, reducing emissions and preventing waste. Adidas will use recycled plastic only, in 2024"

Mar. 2019: "H&M Group signatory of the New Plastics Economy Global Commitment. "Our business to become 100% circular and renewable"

"Our goal is to completely move away from using virgin polyester by 2025."

2019: "Key environmental goals in three areas: stopping global warming, restoring biodiversity and protecting the oceans."
... And main Brands need to accelerate sharply to meet their ambitious commitments

Source: Ellen MacArthur Foundation in 2021

Global Commitment - Ellen MacArthur Foundation (average)

BOs achievement in 2025 at that speed (21%)

- 2020 recycled content (average)
- BOs 2025 target (average)
- Virgin content (average)

Source: Ellen MacArthur Foundation in 2021
Booming demand for r-PET creates an unprecedented price increase trend ... that we expect to continue

r-PET pellets food-grade price forecast

Source*: Icis in 2022
The most innovative solution for a worldwide leadership in the recycling industry
The rise of a worldwide leader!

Carbios aims to offer the most circular process for the recycling of PET by enabling:

- The treatment of any kind of PET waste upcycling low-value feedstocks
- Creating value from waste which is not recycled today avoiding incineration and landfill
- Lowering CO₂ emissions low energy consumption and proximity sourcing

Circular Economy is becoming a reality!
Carbios’ technology can process any kind of PET waste

- **Carbios biorecycling**
- **Chemical recycling**
- **Thermo-mechanical recycling**

100% PET waste

PET applications

- Fibers 67%
- Plastics 33%
- Bottles for beverage 22%
- Other rigid applications 11%

22% PET waste

Raw material flexibility
… which give us a strong competitive advantage on the feedstock price

<table>
<thead>
<tr>
<th>Types of waste</th>
<th>Price estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear bottles</td>
<td>~ 1900 €/t (1)</td>
</tr>
<tr>
<td>Colored bottles</td>
<td>~ 1000 €/t (2)</td>
</tr>
<tr>
<td>Food trays</td>
<td>~ 250 - 500 €/t (3)</td>
</tr>
<tr>
<td>Waste not processable by Mechanical recyclers</td>
<td>~50-300 €/t (4)</td>
</tr>
<tr>
<td>Textiles</td>
<td>~50 to 500 € (5)</td>
</tr>
</tbody>
</table>

Sources:
(1) Price of flakes, in WE, delivered. Source ICIS April 2022. +6% versus March 2022.
(2) Price of flakes, in WE, delivered. Source ICIS April 2022. +9% versus March 2022.
(3) Price of flakes, in WE, delivered. Source: Carbios estimate.
(4) Source: Carbios estimate.
(5) Spot prices for limited volumes. Collected, sorted and shredded. Source: Carbios estimate.
Carbios’ technology: building a fully circular process for PET plastics

CLOSING THE LOOP OF RECYCLING

Consumer using plastic

100% recycled plastic and textile items

Plastic and textile waste

enzymatic recycling

VERSUS CONVENTIONAL RECYCLING

> 90% yield of production at the demo plant (already achieved)

Over 97% achievable under certain conditions*

*hydrolysis time to be defined
Carbios aims to develop a highly sustainable process for PET life-cycle

- 50kt processing capacity plant ↔ 45kt of CO$_2$ eq. would be potentially saved annually

- Compared to virgin PET production, taking into account diversion of PET waste from a conventional end-of-life

46% CO$_2$ potential savings

Low temperature, no pressure

No solvents

LIFE CYCLE ASSESSMENT

- **Climate change (kg CO$_2$ eq/kg of PET):**
 - Virgin bottle-grade PET production
 - Substitution landfill
 - Substitution incineration
 - Carbios process
 - Total

Savings of 1,19 kg CO$_2$ eq/kg of r-PET produced

Source: Preliminary Life Cycle Assessment of Carbios PET recycling process, Carbios, 2022
Carbios: an attractive partner for PET producers

- Specificity of Carbios process:
 - We get back to the most used monomers in the PET industry:
 -> PTA and MEG = 97% of the monomers commonly used in the PET industry.

- Over the next several years, PET producers committed to invest billions in advanced recycling technologies:
 - **Indorama Ventures** is going to spend $8 billion over the next eight years to help scale up advanced recycling and bio-based plastics:
 - “Mechanical recycling will continue, but the big game changer will be a new chapter of advanced recycling and bio-renewable feedstock,” said Alok Lohia, Chairman of Indorama. “For bio-based and advanced recycling, the scale is just not there yet. I take this as my personal challenge to deliver on this, and we are prepared to invest $8 billion from now to 2030.”

Source: AFPM ’22: INTERVIEW: Indorama aims to invest $8bn in chemically recycled and bio-based plastics - CEO
A very appealing solution for consumers

Consumer insight

“The fact that it could be done biologically, that’s a big, big point”

“We need something that is 100% renewable and recyclable because this is what most people have assumed that we have been doing”

“It gives us hope. It’s no longer a never-ending battle”

“It’s more than recycling. It’s regenerating”

“It’s great that it can be reborn as something new. Maybe a shoe, maybe a bottle… it’s not wasted”

“The forever bottle. Made once, lasts forever”

Source: Consumers survey, May 2022, SpringVoice Consulting
Carbios’ business model: three streams of revenues

- Licensing
- Selling of Carbios’ proprietary enzyme
- Brand royalties*

*under definition – to be precised in the near future
Strong partnerships with Brand owners to promote Carbios Inside solution

Contribute to secure their needs

Carbios’ Brand incorporation in the final products

Become the most recognized brand in Circular Economy for plastics and textiles
Carbios enters its industrial phase in a strong financial position

Cash position of 92M€ as of end of March 2022
excluding an additional 30M€ from EIB to be drawn by end of June 2022

- **May 2021:**
 Record breaking capital increase of €114 million with French and International investors confirmed the attractiveness of Carbios investment case

- **December 2021:**
 €30 million loan from the European Investment Bank (EIB)

- **February 2022:**
 First-of-a-kind plant strongly supported by the French Government and the Grand-Est Region with significant non-dilutive financing*

- **First revenues expected in 2023 from licensing**
 More significant revenues expected in 2025-2026

Conditioned to aid notification to the European Commission and to additional assessments by French authorities
Carbios’ ambition

Become the world leader in PET recycling by 2035 and increase our pipeline of eco-friendly technologies

Provide the most sustainable and most circular solutions for the end-of-life of plastics and textiles

Become the best employer of its category — The place to work

Sustainability report to be published by the end of 2022 with strong ESG commitments
Carbios at the edge of enzymatic innovations
Prof. Alain Marty, Chief Scientific Officer
Enzymes to breakdown plastics: 10 years of innovation!

A revolutionary process for infinite recycling and biodegradation of plastics and fibers
What is an enzyme?

Enzyme = Protein
Polymer made from a set of 20 amino acids

Invented by nature to accelerate reactions

In a century, Nature has not invented enzymes able to degrade plastics

Meanwhile, some natural enzymes present a limited activity

Our role is to accelerate their evolution

Enzyme contains a lock
Substrate = key

In saliva and stomach: amylase digests starch as molecular scissors

Scissor = catalysis
key = substrate
Enzymes for infinite PET recycling!

PET polymer (plastics and textiles)

\[
\text{O-CH}_2\text{-CH}_2\text{-O-C-}
\]

Polymerist

ethylene glycol + terephthalic acid

Monomer purification
Enzymes for infinite PET recycling!

Plastic and textile waste

Advantages of the enzymatic recycling process

- Selectivity: no need of sophisticated sorting recycling of complex plastics (PET/PE; PET/PA)
- Low temperature, atmospheric pressure, no solvent
- Ends to the same monomers used by 97% of worldwide PET production plants
2015: PET depolymerization
An inaccessible dream

Sourcing

- Commercial 100% PET film

- Reactor 0.5L - PET: 10 g/L
- 60°C, pH8
- Enzyme: 1 % g/g PET

Depolymerization %
Beginning of the project in 2015
~3% in 16 weeks
PoPLaB: our collaborative Lab in Toulouse

Dedicated to Enzyme discovery & engineering

Staff
14 PhD
7 engineers & technicians
<table>
<thead>
<tr>
<th>PoPLaB’s expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening of biodiversity</td>
</tr>
<tr>
<td>Database analysis</td>
</tr>
<tr>
<td>metagenomic</td>
</tr>
<tr>
<td>Enzyme production by fermentation</td>
</tr>
<tr>
<td>Biochemistry and molecular biology</td>
</tr>
<tr>
<td>Molecular modeling</td>
</tr>
<tr>
<td>Robotic platform for enzyme screening</td>
</tr>
<tr>
<td>Microfluidic screening</td>
</tr>
<tr>
<td>Biophysical analysis</td>
</tr>
<tr>
<td>Cryogenic electron microscopy</td>
</tr>
</tbody>
</table>
The development center in Clermont-Ferrand

Scale-up of the heart of our process, the reactor

In Toulouse, from 20pL, 200µL to 50 mL

Staff
1 PhD
9 engineers & technicians

To...

0.5L

5L

1 m³
100 kg PET

20 m³

2 tons PET
100,000 bottles
20,000 t-shirts

In Clermont-Ferrand
2019: the dream has come true

Sourcing

- Post-consumer Flakes or fibers
 - (95-98 % PET)
- Reactor 1 m³ - PET: 200-400 g/L
 - 68-72°C, pH8
 - Enzyme: 0.1 % g/g PET

Mean Productivity

- Mean productivity: \(15 \text{ g} \cdot \text{L}^{-1} \cdot \text{h}^{-1}\)
- Starch 5 g.L\(^{-1}\).h\(^{-1}\), Cellulose 0.5 g.L\(^{-1}\).h\(^{-1}\)

90% conversion in ~10 hours
Carbios leads worldwide research on PET degrading enzymes

The IsPETase from Ideonella sakaïensis

<table>
<thead>
<tr>
<th>IsPETase</th>
<th>Carbios’ enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative activity</td>
<td>1</td>
</tr>
<tr>
<td>Thermostability Tm °C</td>
<td>46</td>
</tr>
</tbody>
</table>

More than 10 research groups all around the world optimized this enzyme

The best result obtained by Lu et al., Nature, April 2022

<table>
<thead>
<tr>
<th>Optimized</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsPETase</td>
<td>Carbios’ enzyme</td>
</tr>
<tr>
<td>Tm</td>
<td>67</td>
</tr>
<tr>
<td>PET (g/L)</td>
<td>45</td>
</tr>
<tr>
<td>Conversion %</td>
<td>83</td>
</tr>
<tr>
<td>Duration</td>
<td>14 days*</td>
</tr>
</tbody>
</table>

* changing the enzyme every day

Carbios developed strong IP on IsPETase and on the main enzymes described as PETase
The key to success

A successful alliance between polymer science and enzymology
PET crystallinity

A crucial parameter

- Colored washed flakes (95% PET)
- Enzymes prefer amorphous PET
- Extrusion and fast cooling
- Amorphous PET pellets

High crystallinity
~ 35%
Enzyme engineering strategy

Improved thermostability

Enzyme stable during the reaction process

Enzyme working at glass transition T° (~75°C) to take advantage of PET chain mobility

Improved activity

to minimize

- need in enzyme
- reaction duration
- CAPEX and OPEX
Thermostability improvement

Molecular modeling and Nuclear Magnetic Resonance spectroscopy (NMR)

Identification of weaknesses at high T°

PETase_thermo Tm ~104 °C
Activity improvement

Identification and fully redesign of the active site

PETase_opt
World’s first enzymatic technology to recycle and reuse PET-based plastics & fibers

We made the cover of Nature! In April 2020

Real success for the scientists from Carbios and TBI

Over the past 2 years the enzyme has been improved

Enzyme engineering always in progress
Enzyme production

The world leader as partner for the production and supply of Carbios’ proprietary enzyme

They developed an efficient production micro-organism

The enzyme formulation is very stable at room T°
Scale up in line with the target

- 20 m3 reactor
- 2 mt of waste (~100,000 bottles or 20,000 tee-shirts)
- In water
- pH 8, 60°C
- Atm. pressure

Successful scale-up Lab (5L) > Pilot (1m3) > Demo (20m3)
Carbios PLA enzymatic biodegradation technology
An innovative solution for PLA-based single-use plastics

AN INNOVATIVE ENZYMATIC ADDITIVE TO MAKE PLA COMPOSTABLE IN DOMESTIC CONDITIONS at ambient temperature

Ease of use
Introduced as an additive on conventional industrial lines

Compostable
100% Home compostable, at room temperature

Circular
The compost is used as a fertilizer or help to produce biogaz

Competitive
Circularity of composting versus incineration / landfill
A sustainable biodegradation technology suitable for a large range of applications

- Food packaging
- 3D printing
- e-Commerce air-cushion
PLA biodegradable & compostable

Challenges

- Optimized enzyme able to resist at extreme T° of extrusion (170°C)
- Enzyme active in the polymer
- Total degradation to CO$_2$:
 - Home compost Label
Discovery of PLAase

Challenge: enzyme able to resist at extreme T° of extrusion (170°C)

Thermophilic micro-organisms were screened for PLA degradation

The active site of the enzyme was fully redesigned

And the activity of PLA degradation increased 200 times
Evanesto®: a validated performance

To
After 1 week
2 weeks
4 weeks

CONTROL
EVANESTO INSIDE

Disintegration within 4 weeks
Full biodegradation in CO₂ in 255 days

Evanesto®, the first additive that allows plastics with high PLA content to achieve certification “OK Compost Home” by TÜV Austria Group
New developments to make fibers & 3D filament

fibers

3D filaments

<table>
<thead>
<tr>
<th></th>
<th>T0</th>
<th>1 Week</th>
<th>14 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evanesto® inside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After PET and PLA, what’s next?

Production mondiale de polymères
Worldwide polymers production
New polymers

Collaboration with European Labs of reference

- Identification of efficient enzymes
- Promising results at Lab scale

Next Step:
- Enzyme optimization
- Process development at Lab scale
Carbios’ Intellectual Property Strategy
Lise Lucchesi, Intellectual Property Director
A strong and worldwide intellectual property

As of December 31st, 2021

- **50 patent families**
 - 264 patent applications worldwide

- **Carbios**
 - 41 families
 - (225 patent applications)

- **Carbiolice**
 - 9 families
 - (39 patent applications)

- **50 granted patents (from 23 different patent families)**
 - In Europe, United-States, Canada, Mexico, China, Japan, Korea, Brazil…

Worldwide pending applications

Patent family distribution by project

- Biodegradable plastic production
- PLA enzymes
- Recycling process
- PET enzymes
- Bioproduction
IP, an underlying asset for business success

Active policy of securing and strengthening our innovations

- Protection of our results from the upstream lab phase to the final industrial phase
 - Covering enzymes, processes, products and applications
 - When necessary, acquisition of know-how and rights from third parties

Keeping a watch on competitors, technology and patents

- Identify existing prior art before applying for patents
- Identify emerging work, expertise and patents in relevant fields, to ensure the use of our processes and products without restrictions

Ensuring our freedom to operate

- When collaborating with third parties (academics and/or private companies):
 - Full ownership of the collaboration results or co-ownership and exclusive worldwide exploitation rights for the results within the company’s fields of activity
 - Action against third party’s patent application
Example of PET Recycling

A strong intellectual property covering

- Proprietary and optimized enzymes
- All the steps of our recycling process

Enzymes (14 families)
- Patents families on **best enzymes** to be used industrially
- Defensive patents families on **homologous enzymes**

Process (8 families – 2 in progress)

Enzymatic depolymerization

Monomers repolymerization

Monomers purification

Waste pretreatment

- **P** = one filed patent family
- **P** = project of patent application
Our IP team

1 Intellectual Property Director

2 Patent engineers (in biotechnology and chemistry polymer fields)

3 Legal affairs managers

2 IP consultancy firms

with

3 European patent attorneys (each with 15-30 years of experience)

Intellectual Property Committee

reporting to the Board of Directors
Industrialisation focus on Carbios PET recycling technology
Lionel Arras, Industrial Development Director
Carbios reinforces its industrial organization

Carbios Industrial Development Director

Lionel Arras

DEMONSTRATION plant

15 Carbios employees, growing

TECHNOLOGY and LICENSING

8 consultants driven by Carbios

PROJECT 1st commercial plant

50 people involved in Carbios industrial development
The best experts to support Carbios’ first commercial plant project

Lionnel Perrin, Project Director

Before this role:
Project manager of the Carbios demo plant project and start up

Before joining Carbios:
More than 15 years experience in projects with Arkema, Hexcel

Skills:
Extensive project management experience
Drive and Leadership
The demonstration plant: the last step before commercial scale

1. **SCOPE**: Comprehensive : all steps, interlinked
2. **QUALITY**: Tests on different waste streams, critical parameters product quality
3. **DATA ACQUISITION**: for the Process Design Package of commercial plants
4. **PEOPLE**: Develop know-how

- **Enzyme identification & enzymatic engineering**
- **Process scale-up**
 - Reactor: 250 ml to 5 liters
- **Pilot**
 - Reactor: 1 M³
 - 1. All process steps
 - 2. Parametric studies
 - 3. Technology scouting and selection
- **Demonstration plant**
 - Reactor: 20 M³
- **Licensing as of 2023**
- **Commercial unit**
 - Reactors: 1200 m³
The demo plant confirms scale-up performance and robustness

- Enzymatic reaction kinetics and PET conversion: no impact of scale
- Low sensitivity to process conditions: Robust!
- Monomer quality: Good!
 - Sampled with positive feedback from potential end-users
- The selected technologies from the Piloting stage are operational.

25 tons of PET flakes already processed
The demo plant: 2022-2024 roadmap

Q3 2022:
- PET feedstock: test new grades
- first r-PTA and r-MEG volumes produced

Q4 2022:
- Licensing documentation
- Final alignment with the reference unit process design

2023:
- LIFE project: textile feedstock
- Launch ISO 9001 certification

2024:
- Train the operators for the 1st commercial plant
First-of-a-kind commercial plant will generate revenues … and boost Carbios position for licensing

Strategic value of the 1st commercial plant project:

For Carbios

Monomers sales from 2025 •
Volumes deliveries to Brand Owners •
Initiate Novozyme supply operations •

For Carbios future licensees

• 100% proven technology
• Experience of the licensor
• Demonstration of Carbios’ technology integration in the r-PET value chain
Project of the first-of-a-kind plant

Key figures:

- Operational in Q1 2025
- Processing capacity of 50,000 tons of waste/year
 - i.e. to 2 billion PET bottles
- 150 direct and indirect new jobs created

A major partner:

- One of the world-leading PET manufacturer
- Operates 19 PET production plants on four continents in 11 countries
- May co-invest in this project
- Consider expanding Carbios’ technology at other PET sites for future developments

Key timetable for the building of the Unit:

2021-2022

- Engineering studies and site selection

End 2024

- Start of plant acceptance

2023

- Procurement
- Start of construction

2025

- First revenues generated from the Unit
3D model – preliminary plot and layout
A site designed and located to favor local waste sourcing

Carbios & Indorama Industrial plant (50kT): a strategic location with a nearby accessible PET waste due to the border countries (Germany, Luxembourg, Belgium)

+ optimize the carbon footprint and Life Cycle Analysis of the entire process
Parallel and synchronized activities preparing for licensing...

supported with the development of the industrial team

First of a kind plant

- BEG. 2022: Site selection
- 2022: Design studies
- 2023: Construction Starts
- 2025: Plant Start up

Demoplant design and operations

- SEPT. 2021: Demonstration plant launch
- JUL 2022: 100% completed
- 2023: Textile Processing
- 2024: Training operators

Worldwide technology licensing

- END 2022: Documentation completed
- 2023: Recycling technology licensing
- END 2022: Worldwide technology licensing
Key industrial takeaways

- A team, supported by leading partners in the field
- A demonstration plant that confirms the main technology choices
- Industrial Unit: A project fully on track for the operational launch by 2025
- A licensing offer that will ready by 2023
Carbios’ partners testimony
Martin Stephan, Deputy Chief Executive Officer
Our key partners

Our PET Consortium

Our industrial partners

Our strategic shareholders

L'ORÉAL

Novozymes

L'ORÉAL

Nestlé Waters

INDORAMA

MICHÉLIN

PEPSICO

T.E.N

T.E.N

SUNTORY

SUNTORY
Conclusion & Q&A session
Carbios highlights

Carbios disrupt the entire plastic industry with breakthrough technologies

Huge market opportunities and growth potential

Major milestones ahead including reaching licensing stage early 2023

Ambition to build the most circular and sustainable solutions for the plastic industry

A highly attractive proposal for the entire value chain

A strong competitive advantage on waste sourcing

A highly experienced management team supported by renowned shareholders and partners
Enzymes powering the Circular Economy

THANK YOU!

INVESTOR DAY 2022
31st May 2022